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1. Introduction 

Accord ing  to the empirical  rules established by K6nig  [1], B rooke r  [2] and Platt 
[3] the wavelength  of  symmetr ical  a,  co-disubstituted polymethines  (I and II) 

[~N~(CH)2n+I .~ . .N~]  + 

[ O ~ ( C H ) 2 . + ~ O ] -  

[~B'~" �9 (CH)2. +~'~" " B ~ ] -  

[CH2"" "(CH)2n+:'~" "CH2] + 

depends  on the vynil groups  n u m b e r  (n) by the linear relation: 

hn=a +bn. 

(I) 

(II) 

(III)  

(IV) 

(1) 

The above  correlat ion holds also for the carbocat ions  (IV), where  [4] h , ( / ~ ) =  
65 5n + 3305. There  are no exper imental  data  for  the d iboron-po lymeth ines  (III), 
but  the calculated ones by means  of  the PPP m e t h o d  for  the first member s  follow 
an equat ion  of type (1), too  (see Table  1). 

Eq.  (1) is a part icular  case of the general ized formula  of D/ihne and Radegl ia  [5] 

an = k(n +q)P (2) 

where  k, q and p are parameters  depend ing  on the system's  type. This formula  
(2) includes not  only the linear relat ion (1) (p = 1), but  also the rule of Lewis 
and Calvin [6] (p = �89 defined for polyenes  CH~"  "(CH)2n"--'CH2. 

Table 1. Experimental energies Aen (eV) for the longest 
wavelength singlet-singlet (or ~ or*) transition of: poly- 
methineeyanines (I) [7], polymethineoxonoles (II) [7], diboron- 
polymethines (III) a and carbocations (IV) [4] and the extrapolated 
values for infinite (n ~ oo) chains 

X"--'(CH)z.+I"'--'X 

n Ae.(I) As,,(II) he.(III) Ae.(IV) 

0 5.53 4.64 3.95 4.07 
1 3.97 3.42 3.05 3.13 
2 2.98 2,73 2.54 2.67 
3 2.39 2.26 2.18 2.31 
4 1.98 1.93 1.93 2.04 
5 1.69 - -  - -  1.83 
6 1.46 - -  - -  - -  
oo b 1.06 1.14 1.36 1.10 
o0 ~ 1.18 1,31 1.23 0.92 

a The results for As, (III) are calculated by means of the PPP 
method with geometry and parametrization cited in Refs. [9, 10]. 
b The extrapolation done applying the Pade approximation [8]. 
c Values obtained using Eq. (3). 
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The above empirical correlations have the same asymptotic behaviour  - n ~ oo 
results in A ~ oo. This leads to the conclusion that for both the basic classes of 
7r-electron systems - polyenes and polymethines - the gap tends to zero. Such 
a conclusion, based on the formal extrapolation of Eqs. (1) and (2), contradicts 
a number  of other facts showing that both the longest wavelength transition 
energy Ae o~,opt and the energy gap AE~ of these systems are non-zero.  

The theoretical and the experimental  researches [11-15] show that the gap of 
polyenes and their a,  o)-disubstituted derivatives [16] is different f rom zero and 
amounts  about  -~2 eV. 

This result shows that both the rule of Lewis and Calvin [6] and Eq. (2) are 
valid for relatively small number  of vinyl groups (n). 

The application of the Pade approximation [8] gives for all the polymethines 
(see Table 1) finite, non-zero values for the longest wavelength transition energy 
when n ~ oo. Non-zero values for Ae ~,opt are obtained also using the empirical 
correlations [17] between the transition energies calculated by means of the 
H M O  method Aen (HMO) and those found experimentally Aen (exp): 

Aen (exp) = c + d �9 Aen (HMO) 

= A e  cO,opt + d �9 Aen (HMO). 

The values for Aeooopt of polymethines,  calculated using the above equation, 
are presented in Table 1. The MO energies for systems I, I I  and IV are obtained 
f rom the analytical expressions with parameters  cited in Ref. [18, 19]; the MO 
energies of the oxonoles are obtained with the parameters  n o  =c~c+2f lcc ;  

#co = #co. 

For the carbocations (IV) Eq. (1) holds up to n - 6. However ,  the Pade approxi- 
mation, respectively Eq. (3) (see Table 1), and the theoretical studies [20] show 
that Aoo tends not to infinity but for n ~oo  the longest wavelength transition 
energy Ae oo,opt is about  = 1 eV. 

The above considerations taken into account, give the reasons to a suggestion 
that the functional relationship between the wavelength and the number  of the 
vinyl groups A =A(n)  for linear systems: polyenes, polymethines and their 
derivatives, could be approximated by a linear correlation of type (1) or (2) only 
for low values of n. Actually, the expression of function A (n) is more  complicated 
and for high values of n A (oo) tends to the finite value A~ (Fig. 1). 

A simple model  function fulfilling the above conditions and allowing the determi- 
nation of An is the function 

A. = A ~ -  ( A ~ -  Ak)(1 + tgh  ak - t g h  an). (4) 

If k - the value of n for which the experimental  quantity Ak is determined - is 
equal to zero (k = 0), Eq. (4) turns into 

A ~ = A co - (A o~ - A o) (1 - tgh an ). (4a) 
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Fig. 1. Experimental  ( . . . .  ) [7 ,21]  
and calculated ( ) by means  of 
Eq. (4a) values for the longest 
wavelength transition energies of even 
polyenes and polymethinecyanines 

The parameter a, found empirically, amounts to a = 0, 10 for polyenes and 
carbocations (IV); for oxonoles  a = 0, 15 and for polymethinecyanines (I) a = 
0, 10 -0 ,  12. The experimental data and the values of h ,  calculated by means of 
Eq. (4a) for polyenes and polymethine-cyanines are collected in Table 2. 

Although Eq. (4) leads to satisfactory results for h,,  one can hardly say that it 
expreses the optimal functional relationship of the longest wavelength transition 
energy and the number of vinyl groups in a linear molecular system. It should 
only be considered as a quantitative illustration of the statement that the longest 

Table 2. Experimental and calculated by means  of formula (4a) values of wavelength for the longest 
wavelength transition of even polyenes [21] CH2"--'(CH)2,"--'CH2, polymethinecyanines (I) [7], 
polymethineoxonoles  (II) [7], and carbocations (IV) [4] 

Polyenes Cyanines Carbocations Oxonoles 

0 1834 b 1834 2200 b 2200 3047 b 3047 2672 b 2672 
1 2170 2200 3130 3147 c 3962 3867 3626 3687 

(3335) a 
2 2680 2560 4160 4075 4644 4671 4572 4657 

(4437) 
3 3040 2905 5190 4968 5368 5443 5487 5547 

(5480) 
4 3340 3231 6250 5809 6078 6172 6472 6332 

(6440) 
5 3640 3533 7345 6590 6776 6848 - -  7000 

(7302) 
6 3900 3808 8480 7302 - -  7465 - -  7553 

(8060) 
9 4470 4467 . . . . . .  
oo" 5511 5511 11700 11700 11273 11273 9487 9487 

"Values  calculated applying the Pade approximation [8] (see Table 1). 
b Values used for determining of Ao. 
c Values calculated for a = 0.10. 
d Values calculated for a = 0.12. 
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wavelength transtion energy of an infinite linear system A~ has a non-zero, finite 
value. 

The theoretical research and argumentation of this statement, together with the 
working out of a method for quantitative evaluation of the optical properties of 
substituted polyenes and polymethines, is the purpose of the present study. 

The finite, non-zero value of Ae oo,opt could be interpreted qualitatively as follows: 
The polymethines containing an infinite (very high) number of methine groups 
(n ~ oo) might be considered as one-dimensional crystals. Taken for sure the 
non-zero gap to b'e characteristic for the energy spectrum of infinite polyenes, 
the substituted polyene (the polymethine, respectively) can be treated as a 
polyene one-dimensional crystal doped with one or two "impurity" atoms. This 
results in the appearance of new levels located in the gap. These particular levels 
define the optical properties of the one-dimensional systems in question. 

2. Energy Gap of Unsubstituted Polyenes 

In 7r-electron approximation, taking into account the long distance Coulomb 
electron interaction, the presence of a non-zero gap in the energy spectrum of 
the 0ne-particle excitations for polyenes is determined mainly by the electron 
correlation [22]. The geometrical factor - the alternation in the C- -C  bond 
lengths - is conditioned by the electron-phonone interaction [23, 24]. 

The band structure of even polyene can be described simply in adiabatical 
approximation, in the framework of the extended Har t ree-Fock  method, apply- 
ing the Hubbard approximation [25] for the electron interaction. In these 
approximations the energy gap of an arbitrary alternant homonuclear system 
[26], the polyenes in this number [27, 28], can be expressed simply by a correla- 
tional (A .... ) and a geometrical (Ageom) component  

;2 2 
AEoo = ~/A .... + Ageom 

= x/4"y282 + 4(fls - fld) 2. 

In the above equation y is the one-center  Coulomb integral and 3, the correla- 
tional correction, defined by the condition [26-28] 

& 8y ~-,~o Y f~/2 6 dwk 
8 = 2., , 2 2--~- 2 I* -- Jo (6) k V8 Y +e  (wk) ~" x/82"y2+e2(COk) 

where e(wk) are the terms for the MO energies of the polyene. 

In Hubbard  approximation the relative share of these two factors, the correla- 
tional and the geometrical, can not be determined; it depends on the geometry 
(type of alternation) and on the parametrisation. For the cases with strong 
alternation Eq. (6) allows only trivial solutions 8 = 0. Thus A .... = 0 and the gap 
is defined only by the bondlength alternation AEoo= Ageom = 2]fls--Bdl, i.e. the 
gap is defined only by the geometrical factor [29-33]. 
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The lack of alternation (/3s =/3a =/30) makes  the gap dependant  only on the 
electron correlation [34, 35] 

~ = A . . . .  = 28% (7)  

The problem for the appearance of " impuri ty"  levels in the gap, as a result of 
a substitution in the polyene chain, could be treated as in the general case - 
A .. . .  # 0 and Ag~om # 0 - so in the two extreme cases: lack of alternation (Ag~om = 0) 
or absence of correlational correction (A~orr = 0). It will be shown that the three 
approaches lead to qualitatively equivalent results for the location of the impurity 
levels in the gap. A quantitative correspondence can be achieved just using an 
appropriate  parametrisation,  too. 

The appearance of a local level in the case of monosubst i tuted polyene chains, 
the gap being defined only in terms of the electron correlation (Ag~om = 0), is 
treated in a study of Ukrainsky and Kwentsel [37], (see also Ref. 38, 39). 

3 .  M o n o s u b s t i t u t e d  P o l y m e t h i n e s  

Let us denote the bonding and the antibonding MOs of an even polyene (N = 2n 

AOs) by Ok and ~O~ 

~k(f~)) = ~ Ck(s 
la, 

In the A M O  approximation [40-42] of the extended Har t r ee -Fock  method the 
AMOs  of a polyene can be represented as follows (as the energy expressions and 
the results for the orbitals with spin a (1') or /3 (,~) are equal, the representat ion 
below is done only for AMOs  with spin a (1')): 

BMO: ~bk = sin Ok~k +COS Ok4Jr, 

A B M O  : ~/~ = C O S  Okf f l  k At- sin Okd/r~ 

67 6~/ + e (tOg) 
- , cos 20k = (8) 

sin 20k -- x/82y2+ e2(tOk ) E k  E(tOk) 

In expression (8) the sign " + "  refers to BMOs,  while . . . . .  to ABMOs.  

If the A M O s  of a monosubst i tuted polyene 

X C H - -  C H  . . . . . .  CH2 
/ 3 c x  1 2 2 n  

are constructed as 

n n 

Xp = cxq~x + ~ akq~k + Y. a r, c~ r, 
k k 

in Hubbard  approximation the matrix elements dkx (see Eq. (Ia) in Appendix  I) 
are equal to [40] 

ax -- (q, x l H ] ~ )  -- ar + h/3o = h/3o 
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dk~ = (,p~IHI4,~) = CklB~(sin Ok +COS Ok) 

= ckl~xBo(sin Ok + COS Ok) 

d~r = (~ [HI$~)  = Ck17/xB0(sin Ok +COS Ok). 

The introduction of the above expressions turns Eq. (Ia) (Appendix I) into 

(ax - E ) + B 2 ~  ~ c21 (1 +sin 20k)+BE ~ C21 (1 +sin 20k)= 0. 

k E+Ek  k E - E k  

Using the expressions for Ek (8) and Ckl (Appendix II) in the case n-> co, the 
above equation transforms into 

sin t0k 
__~I0 ~ ' / 2  sin2arCtge(tok)--costok 

hflo - E + r/2/32 E 2 - [8 23,2 + (fl~ - Ba)2 + 4fl~fla cos 20Jk ] 

( 8y ) dtOk = 0  X 
1+ ' /~ :y2  + (Bs -B~) :  +4BsBd cos 2 o~k 

e(~ok)=X/(1--t)2+4tcosEtok; t=Bs/fla. (9) 

If the relation between the resonance integrals and the interatomic distance is 
accepted to be [33] B (R) =/3o exp a ( R o - R )  and the energy gap is expressed in 
terms of Eq. (5), Eq. (9) leads to 

sin tok 
=/2 sin2 arctg e(OJk)--COS ~0k 

hBo_E +~lEBE_~_ f 2 1 2 
E - (~AEoo +4B 2 cos 20Jk) 

x 14 , /~AE~+4Bo 2 cos2~oz 
1 2 dO)k=hflo-F-,+Fl(E)=O. (10) 

When 8 = 0 (AE~ = Ageom) , Eq. (10) corresponds to the bond alternation model; 
if t = l  (AE~=A .... ), Eq. (10) corresponds to the model where the gap is 
determined only by the electron correlation. In Table 3 are represented the 
values of function FI(E) for different quantities of the parameters. 

The roots of Eq. (10) within the interval - I B , -  Ba[ < E  < Ifl~- Be [, defining the 
position of the impurity level in the gap, are determined by the crossing point 
of the line E - hxB0 [Bo < 0] and the function FI(E).  

Figure 2 shows the graph of function FI(E). The position of the impurity level 
in the gap depends on the substituent atom, i.e. on the value of parameter hx. 
If hx = 0, i.e. the substituent is a carbon atom, the impurity level is in the middle 
of the gap. This means, that the transition from a polyene with N = 2n AOs to 
a polymethine with N = 2n + 1 AOs is accompanied with an appearance of a 
level in the middle of the gap, determining the optical properties of the poly- 
methine. In the case of carbocations this level is vacant, and in that of carboanions 
- occupied (see Fig. 3). In both cases the longest wavelength transition energy 
would be equal to halfwidth the gap Ae~,opt = 1AE,.  
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Table 3. Dependance of function FI(E)  on parameters t and 8.~ Eq. (10). For the relation 
between the resonance integrals and the interatomic distance is uselt the formula [33]: 
/3(R)=/3(Ro) exp a ( R o - R ) ;  a = 3.2195; the calculations are performed with 31 = 5.4 eV 
[34], AEo~ = 2.25 eV [11]. 

E 
/3o = -3.39 eV /3o = -2.43 eV 
t = 0.719 t = 1 t = 0.879 t = 0.632 
6~, = 0 83, = 1.125 8"/= 1.081 &r = 0 

0.0 0.000 0.000 0.000 0.000 
0.1 0.256 0.297 0.297 0.173 
0.2 0.519 0.604 0.603 0.350 
0.3 0.797 0.930 0.929 0.540 
0.4 1.098 1.289 1.287 0.745 
0.5 1.440 1.699 1.695 0.981 
0.6 1.841 2.187 2.181 1.260 
0.7 2.338 2.802 2.792 1.610 
0.8 3.003 3.634 3.614 2.083 
0.9 4.000 4.901 4.864 2.800 
1.0 5.920 7.358 7.282 4.198 
1.1 20.804 21.719 21.369 16.353 

CONDUCTIVITY BAND 

VALENCE BAND 

ff(e v) 

lPs- f/d I 

1 2 3 
i i q i , y 

- - ~dl 

-I fJs§ I 
Fig. 2. Graph of function y =FI(E)  
(Eq. (10)). The results are obtained for 
the model with bondlength alternation 
A . . . .  = 0; /30 = 3.39 eV; AE~o = 
2.25 eV [11]; (1) nx = 1.0, (2) nx = 0.7 

A s s u m i n g  tha t  A E ~  of  p o l y e n e s  is e q u a l  to 2 .25  e V  [11], t h e  c a l c u l a t e d  v a l u e  

fo r  t he  t r a n s i t i o n  e n e r g y  of  u n s u b s t i t u t e d  p o l y m e t h i n e s  Aeo~,opt = 1 .125  e V  

c o i n c i d e s  w i t h  t h e  e x p e r i m e n t a l  o n e  (see T a b l e  1). 

4. Disubstituted Polyenes 

T h e  b a n d  s t r u c t u r e  of  s y m m e t r i c a l  ( X  = Y)  a ,  o J -d i subs t i t u t ed  e v e n  p o l y e n e s  

was  a l r e a d y  t r e a t e d  in t h e  first c o m m u n i c a t i o n  [16],  w h e r e  t h e  p r o b l e m  is s o l v e d  

by  m e a n s  of  t h e  d i r ec t  a p p l i c a t i o n  of  t h e  A M O  m e t h o d  f o r m a l i s m  to  inf in i te  

sys tems .  F o r  this  r e a s o n  h e r e  wil l  b e  c o n s i d e r e d  o n l y  t h e  o d d  at, t o - d i s u b s t i t u t e d  

p o l y e n e s ,  i n c l u d i n g  t h e  sy s t ems  I, I I ,  I I I ,  w h i c h  a r e  of  p a r t i c u l a r  i n t e r e s t  fo r  t h e  

p r e s e n t  s tudy .  
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The position of the levels in the gap depends materially on the choice of 
alternation model for the unsubstituted odd polyene. The results for a substituted 
non-symmetrical (2n + 1)-polymethine with bond alternation of type 

2 2n 

1 ~ _ _ .  J ' N - 2 , + I  (A) 

differ from those for a symmetrical (C2~ group) one 

2 2n 

1 +,  ( B )  

Assuming the presence of bond alternation, the symmetrical model is adequate 
to the real system, so model (B) will be treated below. In order to simplify the 
formalism, we shall consider the extreme case without correlational correction 
(G = 0). 

The MOs of a substituted symmetrical polymethine with 2n + 1 = 4rn + 3 AOs 
could be written as 

6 t ( A 2 )  = c(qox +qOrx)+ ~ CI,2n+lOZk+l 
k=0  

(11) 

~)l(B1)=C(~x--~tx)-[ - ~ Ci,2k~t2k. (lla) 
k=l 

In the case of polymethines with 4m + 1 AOs the nonbonding MO belongs to 
the irreducible representation B1. 

It follows from the above expressions for the MOs that the problem for the 
symmetrical disubstituted odd polymethines turns into two effective problems: 
for a monosubstituted even polymethine and for a monosubstituted odd one. 
The equations corresponding to the MOs (11) and ( l l a )  are Eqs. (Ib) and (Ic) 
(Appendix I). 

Eq. (Ib), corresponding to the irreducible representation A2 (Eq. (11)) leads 
to (3y = 0) 

sin wk 

E { ( h f l o - E ) +  2 22Efo~ s inZarctge(~ok)-cosoJk 2 2 2 
' l )x/30 - -  2 1 2 dcok} + ~x/3OCl,n+l ~- O. 7r E - [~AE~ +4/302 cos 2 cok] 

(12) 

If n-+oo, c1,,+1->0 and Eq. (12) has a root E = 0 .  The other equation (11a), 
corresponding to the representation B1 is 

�9 2 sin rOk 
s i n  arctg 

+ 2 , ,22E r e(o)k) - -COS (-ok j 
h / 3 o - E  7 / x p 0 _ _ /  rv2 rl~r'72 .A~2 2 1ClCOk = 0  (12a) 

" J0 s --L~mt@/#o COS 0)kJ 

The roots of (12) and (12a), defining the position of the impurity levels in the 
gap, depend on the value of parameter h. In all cases Eq. (12) has a root E = 0. 
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Fig. 3. Position of the levels in the gap and scheme of the electron transitions of disubstituted odd 
polyenes with N = 4m +3 AOs. In the case of polymethines with N = 4m + 1 AOs the non-bonding 
MO belongs to the irreducible representation B1. 
a. even, unsubstituted polyene 
b. carbocation of an unsubstituted odd polymethine 
c. carboanion of an unsubstituted odd polymethine 
d. symmetrical disubstituted odd polymethine 

hx>0 (X~N, O) 

e. symmetrical disubstituted odd polymethine 

hx<0 (X=B)  

f. asymmetrical (X ~ Y) disubstituted odd polymethine 

hx>0; hy>0 (X-=N, Y---O). 

The results, by using d-, e- and  f- ,  are obtained using model B for the unsubstituted odd polyene 

When the substituent is an atom with greater electronegativity than the carbon 
atom - N or O, h > 0. In this case Eqns. (12, 12a) have two equal roots, corres- 
ponding to two degenerate levels situated below the Fermi level, i.e. in the 
semigap to the bot tom of the gap (Fig. 3). For substituents N (poly- 
methinecyanines) or O (oxonoles) with 2n + 1 AOs, the number of 7r-electrons 
is 2n + 2. As the number of zr-electrons in the valence band is equal to 2 n -  2, 
the degenerate MOs in the gap are occupied. 

Using the parameters (see Table 3 and Fig. 2)/30 = 3.39 eV, t = 0.7188, AE~ = 
2.25 eV, the value hs  = 1,5 [43] accepted in the method of Hfickel can be taken 
for hy and the graphical solution of Eqs. (12, 12a) give the values E1 = 0 and 
E2 = E3 = -0 .7  eV (T~C N = 1) or E1 = 0,/~2 = E3 -- - 0 . 9  eV ( T / C  N = 0.72). Thus, for 
the transition energies Ae~,opt we have the values: 0.7 eV (r/CN = 1) or 0.9 eV 
(r/cN = 0.72). If h6  is assumed to be equal to 2 [43], the respective transition 
energies are: 0.8 eV ('qc6 = 1) or 1.0 eV (r/c6 = 0.72). 

The obtained values are in qualitative agreement with the extrapolated values 
for the longest wavelength transition energies of polymethinecyanines (I) and 
oxonoles (II) (see Table 1). In the framework of the models used, it is impossible 
to obtain for the longest wavelength optical transition energy values larger than 
halfwidth the gap. 

An essential fact in all the cases treated is the non-zero longest wavelength 
transition energy. 
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When the electronegativity of the substituent atom is lower than that of the 
carbon atom (h < 0 as it is for the diboronpolymethines), except the root E = 0, 
Eqs. (12, 12a) have two equal roots, corresponding to two degenerate levels, 
situated above the Fermi level (Fig. 3e). A system of this type with 2n + 1 AOs 
possesses 2n rr-electrons, so the non-bonding MO is occupied. 

The results for symmetrical disubstituted polyenes obtained by means of the 
AMO formalism in the case A . . . .  ~ 0 and Ageo m ~ 0 are qualitatively the same. 

A typical example for asymmetrical a, w-disubstituted polyenes are "the 
merocyanines 

R2N'--" "(CH" �9 "CH) n �9 '--'CH'~" "O. 

Due to the very strong influence of the solvent on the position of the longest 
wavelength optical (Tr-+ ~r*) transition [5], the evaluation of Aeoo,opt by means 
of an extrapolation of the experimental data Aen leads to quite different and, 
therefore, unreliable quantities. 

Equation (Ia) (Appendix I) in the case 

X 2 2n V 
1 

1 2n+l 

turns into (n + 0o) 

�9 r/2 2 

f 1 - -  l -{" ( a y  2 2 dtok - -E)n,~flo .o E 2 - E2(wk) 

p ~r/2 2 

+(a~-E)rl2y~ 2 Jo 2cu(o)k) j 

q._ , l ,12T]2~4{f  ~'/2 2 C ~ ( W k )  dtOk}{fO ~/2 2C~(Wk)-d ] 
�9 '0 E 2 - E 2 ( o k )  E2 E2(Wk) tok] 

2 2o4 {IO~/2 2C1(r dcok12 
j 

fix 1 ~Y ( (13) 

In the derivation of the above Eq. (13) the coefficients of the NBMOs are 
neglected 

2 ~ 2  2 n~oO 
~7 /J0C~(N),n+I 1, O. 

The analysis of Eq. (13) shows that it has two different roots E2 # E3 # 0, situated 
below (h~,y > 0), above (h,,y < 0) or on both sides (hx < 0, hy > 0) of the NBMO 
(Fig. 3f). 
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The applied formalism makes it hard to examine the character of the impurity 
states in the gap, i.e. to decide to what extent these are localised round a definite 
AO [44]. 

Starting from general considerations [44, 45] and grounding on the studies of 
Ukrainsky and Kwentsel [37] in the treatment of monosubstituted polyenes, one 
may expect the levels in the gap to be localized. For example, the NBMO of 
odd polyenes is localized. 

The analytic solution, using the method of the finite differences [20], of the 
problem for polymethines with 2n + 1 =4m +3 AOs results in the following 
expressions for the orbital coefficients 

1 , ,, Is--7-1 

s=fld/{3~ ([3d~[3~); /=0 ,  1,2 . . . . .  n, 

i.e.,the modulus of the orbital coefficient is a monotone function. 

In the general case of substituted polymethines, the method developed by 
Lifschitz [46] and generalized by Koutecky [47] (see also Refs. 38, 39, 45) could 
give us an analytical solution of the problem for the orbital coefficients. As the 
character of such a study does not correspond to the problem treated here, the 
results of this research will be reported further [48]. 

It is interesting to note, that the substitution of small molecules with regular 
structure (polyenes, anulenes, etc.) also results in the appearance of levels with a 
local character in the gap. 

A p p e n d i x  I 

Let us denote by ~Pk = ~ ck~p~ the MOs of an arbitrary unsubstituted system 
and by Cx and Cy - the AOs of the substituents X and Y, connected'with the 
system. Representing the MOs of the substituted system by means of the LCMO 
method 

~bl = ct.r + clyCy + Y~ Clk~k 
k 

and introducing 

(Ok[HI~G) = Ek 

(g'y [HI~Pk) = dyk = ckqBqy = ckqrly3o 
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(the indices p and q mark the atoms connected with the substituents X and Y) 
the energy matrix is 

/a~ - E  0 

0 ay - E  

dxl  dyl 

d~z dy2 

d x l  

dyl 

E1 - E  
0 

d x N  d y N  0 0 

The secular determinant, 
equation 

( O ~ x - E ) ( a y - E ) + ( a x - E )  ~ Lk daYk + ( o & - E ) ~  d2~k 
E - E k  Lk E - E  

2 2 
d ~kd yk - dxkdykdxldyl 

+• • - (ax - E ) ( a y  - E ) + F ( E ) =  O. 
k ~k  ( E - E k ) ( E - E I )  

d~2 H~N 

dy2 dyN o j 
E 2 - E .  

"'" " E N - - E  

corresponding to the energy matrix, leads to the 

(Ia) 

Eq. (Ia) could be also obtained using the one-partical classical function of Green 
[46, 47, 49]. 

Eq. (Ia) is a general one - it refers to arbitrary systems. Its use is expedient for 
systems with familiar analytical form of the orbital coefficients and the energies, 
in this number many one-dimensional systems as polyenes, etc. 

For high values of N the sums in Eq. (Ia) turn into integrals, easy for numerical 
calculation. The roots, corresponding to levels in the gap, could be found 
graphically as crossing points of the curves F ( E )  and (ax -E)(o@ --E). 

In the case of symmetrical a, ~o-disubstituted polyenes (X = Y) 

X C H ' " C H  . . . . . . . . .  CH X 
Bcx 1 2 N /3cx 

Od x = Ol y = Ol 

dkx = dky = 2ck~flcx = 2ckl rlxfiO 

Eq. (Ia) could be separated into 
2 

(o~ - E )  2 2 ~ c2k+m = 0 (Ib) +2r/xfl0 E - E k  

2 
(o~-E) 2 2Ek c2k,1 =0.  (Ic) 

+ 2~Txflo E - E k  

The summation in Eq. (Ib) is over the MOs belonging to the irreducible rep- 
resentation Bg for even polyenes, respectively to B1 for odd ones. Analogous is 
the situation with Eq. (Ic), where in dependance of the methine groups number, 
the summation is over MOs belonging respectively to the irreducible representa- 
tions Au and A2. 
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Appendix I I  

In  Hiickel  approximat ion  the energies of  a po lyene  with N = 2n + 1 A O s  

H=C C H  C H - - '  �9 �9 - - -CH CH2 
1 2 3 2n 2n+1  

are [33, 36] 

e ( o k )  = •  - flU) 2 + 4f ls~d COS 2 Ok. (IIa) 

For  sake of simplicity the Cou lomb  integral  of the ca rbon  a tom is accepted to 
be a c = 0 .  

W h e n  n >> 1 

0 - -  O k  - -  ~ r / 2 .  

If the orbital  coefficients of the po lyene  are [16] 

Ck. = Ak sin (OJk/Z + r  

taking into account  the b o u n d a r y  condit ions 

C k l [ a c  - -  e (r ] -~- Ck213 d = 0 

Ck,2n + 1 [ac -- e (Ok)] + Ck,= n13~ = 0 

o r  

e(~0k) sin (Ok + q~) • fld sin (2Ok +q~) = 0  

e (ok) sin [(2n + 1)ok + q~ ] • fl~ sin (2rook + q~) = 0 

(sign " + "  refers to the bonding  MOs  and " - "  to the ant ibonding ones) is 

obta ined  

fld sin ok 
tog + q~ = aretg e(ok)  --/3d COS Ok 

fl~ sin ok 
(2n + 1)Ok + r  = arctg e(ok)--fl~ cos ok" 

For  the orbital  coefficients ck~ and Ck,2n+l we have respectively 

fld sin ok 
ckl = sin arctg e(tok) --[~d sin tog 

fls sin ok 
Ck,2.+~ = sin arctg e ( o k )  - - f l ,  sin Ok" 

= ( - 1 )  k + l  In  the case of  even polyenes  (N = 2n),  ck,2n Ckl. 

(IIb) 
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